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Abstract—The design of certain log-periodic microwave circuit
elements requires a knowledge of the characteristic impedances of a
system of four-coupled strip transmission lines.! The system of four
strip conductors between parallel ground planes is capable of support-
ing four different TEM modes which have different characteristic
impedances. In this paper, the characteristic impedances of the four
modes are determined by a variational method. The variational
solution is an upper bound to the exact characteristic impedance of
the line.

In general, the coplanar strip conductors are located at an arbi-
trary (but identical) displacement from the parallel ground planes.
When the separation between the broadside-coupled strips is pre-
cisely one-half the spacing between the parallel ground planes, two
of the mode impedances may be determined exactly by means of
conformal mapping. The variational solutions are compared to the
exact solutions for this special case. Because of the “cell image”
principle which holds for the problem, the mode solutions presented
here also apply to various single- and two-conductor strip transmis-
sion lines with arbitrary displacements. As a result, solutions for the
following strip line configurations are available from the analysis:
a single strip conductor in a trough, or between parallel ground
planes; two coplanar strips between ground planes; two broadside-
coupled strips in a trough, or between parallel ground planes. An ex-
tensive set of curves are presented which show the characteristic
impedances of the four modes as a function of the relative dimen-
sions of the strip transmission line.

INTRODUCTION

E ASSUME a lossless transmission line of uni-

&;5%/ form cross section so that the electromagnetic
problem reduces to solving Laplace’s equation

in the transverse plane. A cross-sectional view of the
four conductor strip line is shown in Fig. 1. The medium
between the plates is considered homogeneous and
isotropic with inductive capacities u=p, and e=¢,e,
where po=4m X 1077 henry/meter and e,=1/367 X 10*
farad/meter are free space capacities, and ¢, is the rela-
tive dielectric constant. Under these conditions, all
mode solutions are TEM fields which propagate with
the velocity v=(ue)~'/? characteristic of the medium.
The characteristic impedance of the transmission line
for a particular mode is given by (zC)~%, where C is the
electrostatic capacitance per unit length between the
conductors. The capacitance and, therefore, the char-
acteristic impedance, will depend upon how potential
is applied to the system of conductors. In Fig. 2, we use
polarity signs to show the four ways in which the po-
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Fig. 2. Fundamental modes for four-conductor strip lire.

tential ¢, (volts) is applied to the strip conductors. The
parallel ground planes are of infinite extent and are at
zero potential relative to the strip conductors. The
“cell” characteristic impedances for the four modes of
excitation are denoted Z¢1, Zos, Zos, and Zy. For a
particular mode, the characteristic impedance is de-
termined uniquely by the intrinsic impedance of the
medium (u/€)'/?, and the relative line dimensions 7/b,
w/b, and 7/b, which are the line dimensions shown in
Fig. 1 normalized with respect to 2b, the separation of
the parallel ground planes.

As a consequence of the strip line geometry and the
symmetry of applied potentials, the dashed lines bisect-
ing the cross sections in Fig. 2 are the positions of elec-
tric or magnetic walls, depending upon the relative
excitation between conductors. At an electric wall, the
electric field is entirely normal (EX#=0), while at a
magnetic wall, the electric field is entirely tangential
(E-7=0). The dashed line is an electric wall or a mag-
netic wall as it bisects potentials of the opposite or
same sign, respectively. In terms of the potential func-
tion ¢(x, ¥), =0 at an electric boundary and d¢,/0rn=0
at a magnetic boundary. For any mode, the dashed
lines divide the cross section into four “cells” which are,
in effect, images of each other. In order to determine
the characteristic impedance of the four conductor
system, it is sufficient, therefore, to solve the static
field problem for a single cell. The impedance obtained
for the single cell is identical to the impedance of the
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four conductor system in the case of Modes I, 11, and
I11. In the case of Mode IV, the four conductor im-
pedance is one-quarter the cell impedance.

Mode I

In Fig. 3, we show a cell of the line cross section with
boundary conditions appropriate for Mode 1. The
dimensions are consistent with those defined in Fig. 1.
The semi-infinite parallel plates at y=0 and y=b, in
conjunction with the electric wall at x=0, 0<y<b
defines a semi-infinite trough transmission line. The
zero-thickness strip conductor of width 2w extends from
x=7 to x=£§ at a position y=a, where 0 <a <b. The
midpoint of the strip is x=£5, so that {=h+w and
n=h—w. Referring to Fig. 1, the normalized dimension
n/b=h/b—w/b, and the dimension 7/b=(2b—2a)/2b
=1-—a/b.

A potential ¢, is applied to the strip and the potential
is zero on the walls of the trough. A variational expres-
sion for the characteristic impedance of the strip line
may be written in terms of the unknown charge dis-
tribution of the strip conductor.? First, we require the
potential (Green’s function) resulting from a unit line
charge located at a point &', " in the trough region of
Fig. 3. The Green’s function is defined by the inhomo-
geneous equation

G G

1
ax2+—= —76<x—x)3(y—y)

o (1)

where the two-dimensional delta function 8(x—x")é(y
—49') represents the unit source at x’, ¥'. The boundary
conditions on G are

G=0 for x =0, 0<y<h
G—0 as x—> o, 0<y<d
G=20 for x 2 0, y=20

y=25 (2)

The function G(x, y] x', ¥') which satisfies (1) and (2) is

2 =21 n nry’
Gi(, yl oy y) = — 2. —sin <ﬂ> sin < 7ry>
€T 1 W b b

, . Hnwx ,
¢ /5 ginh <) < x

: '
Ny
72l ginh ( ; >, x>

3)

where the notation G, signifies that the Green’s function
derives from the boundary conditions for Mode 1.

The charge per unit area ¢(x’) on the surface of the
strip conductor is a one-dimensional charge distribu-
tion (per unit length) over ¥ =¢, 9<«x’' <& The po-
tential at a point x, y resulting from the charge on the

2 Collin, R. E., Field Theory of Guided Waves. New York: Mec-
Graw-Hill, 1960, pp 148-1635.
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Fig. 3. Strip-line cell with Mode I boundary conditions.

strip conductor is given by the integral

£
69 = [ Gulwy| ¥ o @

When the point x, v is restricted to the position of the
strip conductor, ¢(x, ¥) must reduce to ¢, the potential
on the strip, hence

£
¢ = f Gi(x, al ¥, a)o(x')dx,

where

< x< ¢ (5)

G1(x, a] %', a) which appears in (5) is obtained by setting

y=v"=a in (3), thus

Gl(x7 dl OC/, 0’)

2 2 sin? (ko) {e"‘x' sinh (kx), 2 <4 6
b o1 k ¢7* sinh (kx'), x>« (©)

where k=nn/b. Multiplying (5) by o(x) and integrating

over the strip conductor yields

4 4
60= [ [ G al ¥, 0e@etaxa: )

where
£
0 =f o(x)dx

is the charge per unit length on the strip conductor. In
MKS units, ¢¢Q has the dimensions volt-coulomb/
meter.

The wvariational formula for impedance is obtained
from the relation

o0

Zy = (C)L = (ue)'V2 = 8
( (ue) o ®)

Substituting (7) into (8) yields
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f Gz, | o, @)o(x)o (o) da’ d

([ o]

7

Zol = (MG)UQ

(9a)

N
= (ue)'* — (9b)
Q

2

Where N=¢¢Q represents the double integral in the
numerator of (9a) that is, (7).

The stationary value of (9) is an absolute minimum,
so that (9) provides an “upper bound” to the exact
characteristic impedance of the line. The characteristic
impedance is evaluated by substituting an approximate
representation for o(x) in (9), and then minimizing
Zy1 with respect to the variational parameters a,. This
is accomplished by setting 0Z:1/8a,=0, solving for the
parameters a;, and then substituting the a; back into
(9) to determine Zy;. We represent a(x') by the three-
term series.

(2 = ay + arr’ + axx'?

(10)

The general functional form of ¢(x’) is an asymmetric
parabolic distribution. From (10), the product o(x)
-g(x’) which appears in N is

c(®)e (&) = a® + aear(x + 2') + aoaa(a® + 2'?)

+ ar’wr’ + a105(a'%* + xx'?) + @ (e'H) (1)

At this point, it is convenient to introduce the func-
tions ;. Let the six functions Z; (=0, 1, 2, - - -, 5)
represent the following integrals

£ £
o =f f Gidx'dx
7 7
£ £
Z = f f 2 Gidx'dx
7 n
£ £
22 = f f x’zGldx'dx
n 7
£ £
S = f f xx'G1dx' dx
n n
£ H
A =f f xx'2Grda’dx
n n
£ 13
T = f f a2x2Gdx dx
7 7

where Gi(x, a|x’, a) is defined in (6). Because of the
symmetry of the Green’s function, ' and x may be
interchanged in any of the integrals (12) without alter-

(12)
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ing the value of the integral. From (9), we have
£ £
N = f f Gi(x, al ¥, a)o(x)o(x")dx'dx (13)
7 7

Substituting (11) into (13), we determine by virtue of
of the definitions (12) and the Green’s function sym-
metry that N is equal to

N = ag®Zg + 2a06121 + 2a00:2s + 01225

+ 2018234 + @225 (14)
The evaluation of the Z; integrals is straightforward
and will not be presented here? It results that the
=; functions are comprised of twenty-five fundamental
infinite series which are denoted S;.* These series arise
because of the series form of the Green’s function. The
simplest integral is Zy. In terms of the series S, Zo
is given by

2
[(E — )See — Soz + S13 + Sas — %(533 -+ 543)] (15)

So= —
¢ €

where, for example,

©  sin? (ka)e*EM
Si=2, ———

n=1 k3

(16)
Substituting (10) into the integral for Q yields
£
Q= f o(¥)dx=2w(ae+arh+azxy), coulomb/meter (17)
n

where h=(t-+n)/2 is the midpoint of the strip, and
y=h+(w?/3). When (14) and (17) are substituted into
(9b), and Zoy; is minimized with respect to the parame-
ters a., a solution of the equations is

ao =1
KuCi — K1:Co
U KuKa — KnKu (18)
KuCs — KaCy
T KK — Kﬂfch
where
K= — kS Ci=hSy—
Kpo=Si—hSy  Co=~Se— 3y
Koy=2—7v21
K= 25— vZs (19)

3 For details see Duncan, J. W., Characteristic impedances of
multiconductor strip transmission lines, FR 64-14-153, Hughes
Aircraft Co., Ground Systems Group, Fullerton, Calif., Aug 7, 1964

4+ The functions Z, and the series S,, are defined in the Appendix.
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Substituting (14) and (17) into (9b) along with ag=1,
w=po, and € =¢,€, we obtain the result
- eN
\/61- Z01 = 12011' —Q‘Z—
z 2a12 2,22 + a1?Z3 + 2a1a:Z4 + @22
— 120 o T 20121 + 2a:2, 1°23 12224 2 510hms 20)

w2\ 2
472 [1 + aih + a2 <h2 + ?>:| J

where €, is the relative dielectric constant and +/uo/e
=120m ohms. In (20), eN=epyQ has the dimensions
(coulomb/meter)? and, therefore, eN/Q? is dimension-
less.

Equation (20) is the variational solution for the char-
acteristic impedance of the strip line cell which is de-
picted in Fig. 3. In order to evaluate (20), one must
specify the dimensions @, b, %, and w. The twenty-five
infinite series .S,, must be evaluated, and then be used
to form the six functions Z;. After the Z; functions
have been determined, the variational parameters a,
and a; may be calculated using (18) and (19). The vari-
ables are then substituted into (20) to obtain the char-
acteristic impedance.

We wish to emphasize that the impedance is uniquely
determined by the relative dimensions a/b, k/b, and
w/b. Unfortunately, it is not evident that this condition
exists when one views (20). The dependence of (20) upon
relative dimensions is obscured because of the the
manner in which o(x) was defined. It may be seen from
(10) and (17) that the coefficients ao, @1, and a, have
different dimensions. The definition (10) leads to the
recondite form of (20). If we had chosen to define a(x)
in the normalized form o(x)=ac+a1(x/b)+a:(x/b)?,
the dimensions of the coefficients a, would be identical
and the denominator of (20) would take on the new
form Q?=4w?{ao+ai(h/b)+as[(h/b)*+3%(w/b)?]}2 The
dependence of Zy; upon relative dimensions would then
be more evident although the complicated nature of
the Z; functions still makes this identification a difficult
task. In any event, the choice in defining ¢(x) is com-
pletely arbitrary.

Mode I1

The analysis of Mode Il holds for the same cell
geometry as Mode I (Fig. 3). The Green’s function is
still defined by (1), but the boundary conditions on the
cell are the following:

oG

— =0 for x=0 0Ly<Ld

ox

G—0 as x—>w 0<y<d (21)
G = for x>0 y=0

y=2° J

The function G.(x, y| x', ¥") which satisfies (1) and (21)
is

2 2.1 n nwy’
Go(x, y’ «,y) =— Z — sin < Ty) sin < ik )
€T nm1 W b b

nTE
gz’ [b cosh( ; ) x < x

7
nTx
e~n/b cosh < ; > x>

(22)

It is convenient to define six functions /=; which are in-
tegrals of Gi(x, a’x’, a) identical to the integrals of
Gi(x, a|«, @) defined in (12), that is let

13 £
0= f f Gydx'dx
L] 7
£ §
1= f f x'G2dx'dx
7 Y

Y
Es = f f 222G odx’ dx
7 7

Now it results that the functions &; are comprised of
the same twenty-five infinite series S;, that form the
functions Z,, the only difference being changes in sign of
certain of the S, terms. Consequently, it is convenient
to define the functions Z; and E; simultaneously by
means of the dual sign notation (£).®> The expression
for Ho is

]

In]

(23)

2
Eo = —b [(E - 77)502 - Sos + S13 - 523 + %‘(Sas + S43)] (24)

€

which may be compared to (15), the expression for Z.
Now it should be evident that the analysis carried out
for Mode I also applies to Mode II. The variational
solution for Z,,» may be written from (20) simply by
replacing Z; by =,; hence,

§ See the Appendix.
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Ve Zoo = 120me

where a1 and a, are given by (18), but the coefficients
K, and C; defined in (19) now must be constructed using
.. For example, Ky =E;—hE;, and Co=7vE,—Z,.

Mode 111

The cell geometry of Fig. 3 still applies, but the cell
boundary conditions for Mode I1I are

G=20 for =0 0<y<hH
G=0 for x>0 y=0

G—0 as x—> ® 0<y<d (26)
G

— =0 for x>0 y=10

ay

From (1) and (26), the Green’s function for Mode I1I is

2 ® 2 / nw ny'
Gs(x, | &, y") = — > ——sin( y>sin< 7ry>

€T 5=1,3,5,--+ H \ 2b 2b

. nwx
e~ 20 ginh 5 x <«

nrx’
e—nel2b ginh (»EI;—) x>«

(27)

We may define integrals of Gs(x, a\ x', a) identical to
the integrals of Gi(x, a| %', a) defined in (12). When the
integrals are evaluated, we find that the expressions
are exactly the same as the functions Z; with the fol-
lowing change: the twenty-five infinite series in the
expressions are similar to the series Sj, except that the
eigenvalue k=nw/b is replaced by k/2 everywhere and
the summation is restricted to the odd integers. These
companion series to the S; are denoted x.,.® To illus-
trate, the function Z, for Mode 111 is defined

H £
o = f f Gs(x, al &, a)dx'dx
7 7

2
= -E)_ (& — mxo — xos + x13 + X235 — F(x35 + x13)] (28)
€

where, for example,

ka\
sin? [ — JekE—m /2
2/

n=1,3,5, -~ <k>3
2

6 The series x., are defined in the Appendix.

(29)

Eo + 2a151 + 2055y + 612 Es 4+ 2a10:7 + a22E5l

w2 2
4w2|:1 + dlh + ay <]l2 + ?>j|

ohms (25)

Expressions (28) and (29) may be compared to (15) and
(16) which apply to Mode I.

The solution for Mode III follows directly from the
analysis for Mode 1. Zy3 s given by (20) when the func-
tions Z;, and the parameters ay and as are derived from
the series X

Mode IV

The boundary conditions for Mode IV on the cell
geometry of Fig. 3 are

G=0 for x>0 y=20

G—0 as x— @ 0<y <

oG

— =0 for x=0 0<y<Lb (30)
dx

G

— =0 for x>0 y==

9y

From (1) and (30), the Green'’s function for Mode IV is

2 °° 2 7 nwy
Gi(z,v|a',9) =— 3, —sin <—27rbl> sin < ki >

€T p=—1,3,5,-++ H 2b

{ , nrx
g™’ 120 cogh | —— <
2b
: , (31)
nwx
e~ I2% cosh ( > x> o
20

We define function integrals of G, identical to the in-
tegrals (23) that applied to G,. The reader may antici-
pate that this procedure leads to six functions identical
to the previous functions E,, but expressed in terms of
the odd-term series xy. To illustrate, the function Hg
for Mode 1V is

H £
Eo = f f Gilx, a| &', a)dv'dx
7 1

2
= —b [(5 - 77))(02 — Xos + X13 — X2z + %(X33 + qu)] (32)
€

which may be compared to E, for Mode [I in (24).

The procedure to obtain Zu is now obvious. Zu
is given by (25) when E., a, and a. are derived from the
SEries X -

The computational procedure leading to the four
modal solutions may be summarized as follows: For a
given set of cell dimensions, twenty-five series S;, and
twenty-five series x,, must be evaluated. The series .Sy,
may be used to construct the functions Z; and &, One
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obtains /& Zoi from (20) using Z; and 4/, Zo; from
(25) using Z;. In identical fashion, the series x; may be
used to construct the functions Z; and =,. In this case,
e, Zoy is obtained from (20) using 2, and e, Zy is
obtained from (25) using Z;. When calculations were
carried out on an IBM 7094 computer, the computer
was able to obtain 900 different solutions of mode im-
pedance in less than two minutes of machine time.

DiscussioN oF RESULTS

Some interesting relations may be deduced from the
variational formulation of the problem. In Fig. 4(a),
we show a single strip conductor in a trough identical
to the cell geometry of Fig. 3. The trough width is b, and
the strip is located at a position a=25/2, midway be-
tween the parallel ground planes. In Fig. 4(b), we show
a dual strip line in a trough of width b, where the con-
ductors are energized in parallel (+, +) as shown. The
strips are located at positions ¢ =5/4 from the ground
planes. The conductor widths 2w and displacements 7
from the end wall are assumed identical in Fig. 4(a)
and (b). We shall now establish an exact relation be-
tween the impedances of the two configurations.

The Green’s function for Fig. 4(a) is (3). The char-
acteristic impedance is given by (20), where the func-
tions 2; derive from the series S,,. We consider the case
a="5b/2; thus, in the numerators of all of the series .S,,,
the factor sin?(ka) =sin? [n(r/2)]=1for n=1,3,5...
and sin*(ka) vanishes for n even. Consequently, for this
special case the series .S; reduce to odd-term series
where the sine function in the numerator is equal to
unity.

Now consider Fig. 4(b). The dashed line is a magnetic
wall so that the lower “cell” is similar to the cell for
Mode III defined in boundary conditions (26), except
that the magnetic boundary is defined at y=»5 in (26),
and it is defined at y=25/2 in Fig. 4(b). The Green's
function for a unit line source in the cell of Fig. 4(b) is

4 ® 1 n nay’
Gle,y| o', y)=— 2 gsin< 2y>sin< Zy>

€T 1—1,3,5,--+ N

nwx
g’ /b smh( ; > x < x

z
HTX
e—77e/b ginh < 3 ) x> &

(33)

which may be compared with (3), where (3) leads to
the impedance of Fig. 4(a). Note that (33) is precisely
two times (3), when (3) is restricted to the odd integers.
We have already seen that (3), or more precisely
Gi(x, a[x’, a) as defined in (6), becomes an odd-term
series for the case a=5/2.

When one uses (33) to derive the cell impedance for
Fig. 4(b), the solution is given by two times (20), where
the functions Z; are constructed of series identical to
the series S; with the restriction that the series are
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Fig. 4. (a) Single-strip trough transmission line. (b)
Dual-strip trough transmission line.

summed only over the odd integers. For the geometry
under consideration, a=050/4; thus, in all of the series
numerators sin(ka) =sin?[n(wr/4)]=1/2, since n=1,
3,5, -in (33).

1t is now evident that, under the conditions specified,
every series .S,, that applies to the cell of Fig. 4(b) is
precisely one-half times the identical series S, that
applies to Fig. 4(a). The series for the two configura-
tions are identical except for a constant multiplier of
one-half. The functions 2, are linear in the series S;, and
so scale exactly by one-half. From (18) and (19), the
variational parameters ¢; and a; are independent of a
constant multiplier. It follows from (20) and the preced-
ing discussion that the “cell impedance” of Fig. 4(b) is
tdentical to the impedance of Fig. 4(a). The characteris-
tic impedance of the entire dual strip line in Fig. 4(b),
that is, the cell plus its image in the magnetic boundary,
is one-half times the cell impedance. Thus, we estab-
lish that the dual strip-line impedance is exactly one-
half times the single strip-line impedance. Correspond-
ingly, the dual-strip capacitance per unit length is
exactly twice the single-strip capacitance per unit
length, and this characteristic is independent of the
displacement n and the strip width 2w. This rather
remarkable property is made evident through the
variational formulation of the problem. The result is
exact because the variational solution is exact for an
infinite series representation of the charge distribution,
and all of the foregoing results still hold for an infinite
series representation. As the strip displacement 7 be-
comes very large compared to the trough width, the
impedances approach the values for an isolated strip?
and broadside-coupled strips® between infinite parallel

7 Collin, R. E., op. cit., pp 139-143.

8 Cohn, S. B., Characteristic impedances of broadside-coupled
strip transmission lines, IRE Trans. on Microwave Theory and Tech-
nigues, vol M'TT-8, Nov 1960, pp 633~637.
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ground planes. Thus, the impedarce relation may be
verified for the limiting case /b—> from these results.
Because the Mode III solution was derived for a cell
width of b in order for the geometry to be consistent
with Fig. 1, it follows that Zy; for the dimensions
a/b=1/2, 2q/b, 2w/b will be identical to Z,; for the
dimensions a/b=1/2, 3/b, w/b.

The wvariational solution is an upper bound and,
as such, is always somewhat greater than the exact
characteristic impedance of the transmission line. In
order to estimate the accuracy of the variational sol-
utions, we let 5/b becomes very large and compare
Zo and Zgz with Cohn’s “odd” and “even” mode im-
pedances for broadside-coupled strips. Cohn's solu-
tions, which are obtained by an approximate conformal
mapping of the problem, are valid for w/r greater than
about 0.35. In order to utilize the simplified (4) and
(5),% the additional condition (w/b)/(1—7/b)>0.35
must be satisfied. Selecting a range of line dimensions
which satisfy these conditions (w/b=0.5, 0.1<7/b
<0.9), the variational solutions are compared with the
conformal mapping solutions in Table I. Because of
symmetry, Zoy at (/) is equal to Zy at (1 —71/b).

Specifying a/b=1/2, Zy and Z,. are the odd and
even mode impedances of two coplanar strips displaced
midway between infinite parallel ground planes.'® This
problem may be solved exactly by means of conformal
mapping. In Table I, we compare the variational
solutions with the exact solutions for narrow (w/b
=0.05) and wide (w/b=0.5) strips. The gap separation
between the coplanar strips varies from 0.025 to in-
finity, that is, from an extremely small gap to the
geometry of an isolated strip between parallel ground
planes.

First we note that Zy; is within 2 per cent of the exact
solution over the entire range of dimensions. The varia-
tional solution Zy; is accurate to within 2 per cent over
a wide range of dimensions, but the error may exceed
2 per cent when the gap separation /b becomes small.
Evidently, the simple parabolic charge distribution is
not an adequate representation for very closely spaced
coplanar strips in a (+, —) mode. Considering a con-
stant width strip, the error increases as 5/b decreases.
Conversely, for a constant 5/b, the error increases with
the strip width w/b. The maximum error appearing in
Table II is 11.6 per cent which results for w/b=0.5,
1/b=0.025. Because Zy; is a (4, —) coplanar mode
similar to Zy, the accuracy in determining Zy; should
follow that of Z,;. Correspondingly, Zy should be de-
termined with the same order of accuracy as Zg..

The variational solutions exceed the exact mode im-
pedances by an amount that depends upon the mode
and the relative line dimensions. By studying the data

9 Cohn, S., ibid., page 635.
10 , Shielded coupled-strip transmission line, IRE Trans. on
Microwave Theory and Technigues, vol MTT-3, Oct 1955, pp 29-38.
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in Tables I and II, it is possible to estimate a “correc-
tion factor” to apply to the variational impedances
so that they will nearly correspond to the exact values.
Consider, for example, the odd and even mode im-
pedances for broadside-coupled strips (Zy; and Zy in
Table I). If one divides the variational values by the
factor 1.02, the variational and exact impedances are
almost identical. The same factor holds for narrow-
width strips. Referring to Table 11, if the gap separa-
tion 7/b>0.1, the factor 1.02 adjusts Zo; to within 2
per cent of the exact impedance for both narrow and
wide strip conductors. In fact, in most cases, the error
is negligible. It is possible, of course, to obtain a lower
bound variational solution in terms of an assumed po-
tential distribution, and to thereby “bracket” the
exact impedance of the line. The labor involved in this
procedure is as great as for the upper bound solution
and did not seem warranted in view of the accuracy of
the upper bound solutions for most line dimensions.

Impedance data resulting from the variational
analyses are presented in Figs. 5 through 16. In all cases,
the quantity shown is v, Z, which is, of course, nu-
merically identical to the characteristic impedance of
an air dielectric (v/e,=1) transmission line excited in
the given mode. Zg1, Zoz, Zos and Zy are “cell imped-
ances” and, therefore, represent the characteristic
impedance from one strip conductor to ground under
the boundary conditions imposed by the particular
mode of excitation illustrated in Fig. 2. In Figs. 5
through 9, we show /e, Zo1 and /€, Zos as functions of
the normalized strip conductor width w/b. Each curve
of impedance is for a constant gap separation 7/b. The
family of curves in each figure corresponds to a constant
strip displacement 7/b between the broadside-coupled
strips. The curve n/b= = vyields the impedance of a
single isolated strip conductor between parallel planes,
or of two broadside-coupled strip conductors between
ground planes when excited in the odd mode. As men-
tioned above, the odd (4, —) potential symmetry
of Modes I and II about y=10 causes Z; and Zy at
(r/b) to be identical to Zp and Z,, respectively, at
the symmetrical position [1—(7/b)]. Consequently,
the five figures provide impedance data for {7/b) over
the interval 0.1<(7/6) <0.9 in increments of 0.1.

In a similar fashion, curves of v/e, Zos and /e, Zo, are
presented in Figs. 10 through 14 for 7/b==0.1, 0.3, 0.5,
0.7, 0.9. The even (4, +) potential symmetry of
Modes I1I and IV about ¥y =0 causes Zy3, Zos at (r/b) to
be different from Zy, Zo at [L—(r/b)]. The curve
n/b= o yields the impedance of two broadside-coupled
strip conductors between parallel planes when excited
in the even mode.

The impedance data v/e, Zo; and e, Zos for 7/b= o
are collected in Figs. 15 and 16, respectively. These
curves complement Cohn’s solutions for broadside-
coupled strips since they hold for dimensions beyond
the range for which Cohn's formulas are valid.



114 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES January
TABLE 11
Zwn A
wh | b | :
Variational Exact Variational Exact
0.05 0.025 102.8 98.4 285.6 282.5
0.05 122.2 118.9 269.5 266.1
0.10 146.5 143 .4 247.3 245.6
TABLE I 0.20 171.9 168.7 223.2 220.3
0.45 193.4 189.3 203.7 199.7
ZOI 203
) 199.0 195.0 199.0 195.0
w/b /b Vari- Approxi- Vari- Approxi- !
ational, mate ational, mate 0.50 | 0.025 51.1 45.8 76.9 75.7
0.5 0.1 28.7 28.1 173.0 169.6 0.05 54.2 50.7 75.5 74 .4
0.3 58.2 57.0 133.6 131.3 0.10 58.3 56.0 73.3 72.2
0.5 66.7 65.4 102.2 100.2 0.20 62.6 60.9 70.4 69.2
0.7 58.2 57.0 70 .4 68.6 0.45 66.0 64.5 67.5 66.2
0.9 28.7 28.1 30.0 29.1 l © 60.7 65.4 66.7 65 .4
| I | LT
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APPENDIX

The integral definitions of the functions Z, and &, are given in (12) and (23). The functions are written below for
corresponding indices as a single expression using the (£) sign notation. Remember that 2, and E; also may be
written using the series x,, as was shown in (28) and (32). This procedure leads to the solutions Zp3 and Ze. The
functions ¥, and =, are as {ollows:

z 2 1

HO = —b[(f—n)S()z—Sog‘i—Sls iSQ:} i _2‘(S33+S43):| (34)
i €

2y 20/ —7 3 _ 7 _ _ 1 ) ,

— =—b\:< 9 >502 —"2—(503—513 +523i533) —?@os“sls +523i543) i‘524+—2‘(534+544) (;35)
=51 € -

2y 2[/8—17° £ _ 7° _ e
= [( 502“7(503—513+523i533) ——?(503—513+sti543)+f(504+514i524+»334)

. &L\ 3
e (36)
— 7(Sos + S1s F Sas £ Sag) — 2(Sos — S15 F S25) T (Sss + 545):|
> 2 £ — gyt g2 2 B )
= —[< i >Soz — — (Sos £ Sys) — K (Sos + Su) + &(S1z £ Szz) — E(S1s F Saa £ Ss0)
Jop! eb 3 2 2 37

1
+ 9(S1s + S2a F Sue) + (Sos — S15 + Ses) F Py (Sss + 545)]
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2 28— g + & g 7’
L= _b]:< >Soz + <—2 > (S1s £ S2s) — 5y (Sos = Ss5) — B (Sos £ Sis) T 28nS0s
=P
é 2
7 (Sos — S1a £+ S2a F 3Se0) — — (504 — Su F Sas £ 3540) + 28(Sas — S3s) (38)
+ 29(Ses — Sus) £ (2526 — Sas — S46)jl
Z_ 20— 3 7* _
L= 2 P Soz + E*(S1s + Sas) — Y (Sos £ Sgs) — Y (Sos &+ Sus) — 287(S14 F Sos) + 289%(S14 £ S2a)
5 €
53 2 (39)
4+ — (Sos F 3S3) — — (504 + 3Su) — 489(S1s T S2s) + 28(S1s &+ Sas F 2535) + 29%(S1s £ Sas F 2S4s)
+ 4E<Slﬁ + Sae T Sie) — 477(516 F Sos = S4s) — 2(28¢7 — 2517 T 289y £ Sar - 547):|
The series S;, and x,, are, in general, functions of the o= i sin? (ka)e *& 2
variables a, b, §=(h+w), and n=(h—w). The argu- b= = P (42)
ment of the sine function in the S;, series is (ka) =nma/b. w in? (a,/2)ek (12
The argument of the sine function in the x., series is Xxv =2 > sin? (ka/2)e (43)
(ka/2). The subscript ¢ denotes a family of series, all of n=1,3,5,+ R
which contain the same exponential factor. For ex- = sin? (ka)e kD
ample, e #& occurs in all of the series Sy. The sub- So = 2 e (44)
script £ =0 is used when no exponential factor is present. =t
The subscript » is the exponent or power of %k that ap- - o i sin® (ka/2)e~*&tm /2 45
pears in the denominator of the general series term. Xow = P B (45)
The subscript » takes on five different values for a o sin? (ka)e 2t
particular 4, and the subscript 7 takes on five values so Ss = > s (ewje ™ (46)
that the double subscript notation identifies twenty- n=1 K
five series .S,, and twenty-five series x,.. In all of the © sin? (ka/2)e
series, k=nm/b and 0 <a <b. Xo =2 D — % “n
The five series Sy, and the five series xg, are defined n=L3,8, -
foll : > sin? (ka)e—%n
as follows Sy = Z *( ) (48)
*. sin? (ka) n=l
So = Z (40) e sin? (ka/2)e
n=l X =2 2 — 49
i sin? (ka/2) Pl
Xor = 2 Ny The series Soz, Xo2, Sos, Xos have closed-form expres-
s (R/2) sions. The series Sos, Xo3, S have alternate
. 03y X038y 205, X05 a ate, more
_ 5 i sin® (ka/2) (1) rapidly converging forms. The reader is directed to the
e B formal report by Duncan? for details.

where v=2, 3, 4, 5, 7. We point out a characteristic that
is evident in (40) and (41) which holds for all of the
series under discussion. Any setries x, may be written
from the corresponding series S,, by replacing & by &/2
everywhere, and restricting the summation to the odd
integers. The exponent » does not take on the value 2 in
the remaining series, but does assume the value 6 which
was not true with the series Sy,. In the following series,
v=3,4,5, 6, 7. We define
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