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Abstract—The design of certain log-periodic microwave circuit

elements requires a knowledge of the characteristic impedances of a

system of four-coupled strip transmission lines.1 The system of four
strip conductors between parallel ground planes is capable of support-

ing four different TEM modes which have different characteristic
impedances. In this paper, the characteristic impedances of the four
modes are determined by a variational method. The variational
solution is an upper bound to the exact characteristic impedance of
the line.

In general, the coplanar strip conductors are located at an arbi-
trary (but identical) displacement from the parallel ground planes.

When the separation between the broadside-coupled strips is pre-

cisely one-half the spacing between the parallel ground planes, two

of the mode impedances may be determined exactly by means of

conformal mapping. The variational solutions are compared to the

exact solutions for this special case. Because of the “cell image”
principle which holds for the problem, thf? mode solutions presented
here also apply to various single- and two-conductor strip transmis-

sion lines with arbitrary displacements. As a result, solutions for the
following strip line configurations are available from the analysis:

a single strip conductor in a trough, or between parallel ground
planes; two coplanar strips between ground planes; two broadside-

coupled strips in a trough, or between parallel ground planes. An ex-
tensive set of curves are presented which show the characteristic

impedances of the four modes as a function of the relative dimen-
sions of the strip transmission line.

INTRODUCTION

w

E ASSUME a lossless transmission line of uni-

form cross section so that the electromagnetic

problem reduces to solving Laplace’s equation

in the transverse plane. A cross- sectional view of the

four conductor strip line is shown in Fig. 1. The medium

between the plates is considered homogeneous and

isotropic with inductive capacities p = V. and e = e,eo,

where pO = 47r X 10–7 henry/meter and eO = l/36r X 10–9

farad/meter are free space capacities, and G is the rela-

tive dielectric constant. Under these conditions, all

mode solutions are TEM fields which propagate with

the velocity v = (pe)–lfz characteristic of the medium.

The characteristic impedance of the transmission line

for a particular mode is given by (ZJC)-’, where C is the

electrostatic capacitance per unit length between the

conductors. The capacitance and, therefore, the char-

acteristic impedance, will depend upon how potential

is applied to the system of conductors. In Fig. 2, we use

polarity signs to show the four ways in which the po-
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Fig. 1. Four- coriductor strip transmission line.
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Fig. 2. Fundamental modes for four-conductor strip line.

tential @O(volts) is applied to the strip conductors. The

parallel ground planes are of infinite extent and are at

zero potential relative to the strip conductors. The

‘(cell” characteristic impedances for the four modes of

excitation are denoted 201, 202, 20s, and 204. For a

particular mode, the characteristic impedance is de-

termined uniquely by the intrinsic impedance of the

medium (p/e)l~’, and the relative line dirnensiorls ~/b,

zw/b, and ~/b, which are the line dimensions shc}wn in

Fig. 1 normalized with respect to 2b, the separat ion of

the parallel ground planes.

As a consequence of the strip line geometry and the

symmetry of applied potentials, the dashed lines l[)isect-

ing the cross sections in Fig. 2 are the positions of elec-

tric or magnetic walls, depending upon the relative

excitation between conductors. At an electric wall, the

electric field is entirely normal (~ X z = O), while at a

magnetic wall, the electric field is entirely tangential

(~. ti = O). The dashed line is an electric wall or a mag-

netic wall as it bisects potentials of the opposite or

same sign, respectively. In terms of the potential func-

tion O(X, y), 4 = O at an electric boundary amd d4/dn = O

at a magnetic boundary. For any mode, the dashed

lines divide the cross section into four ‘[cells” which are,

in effect, images of each other. In order to determine

the characteristic impedance of the four conductor

system, it is sufficient, therefore, to solve the static

field problem for a single cell. The impedance obtained

for the single cell is identical to the impedance of the
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four conductor system in the case of Modes I, II, and ~

111. In the case of Mode IV, the four conductor im- 1
pedance is one-quarter the cell impedance. I

I

Mode I

In Fig. 3, we show a cell of the line cross section with

boundary conditions appropriate for Mode 1. The

dimensions are consistent with those defined in Fig. 1.

The semi-infinite parallel plates at y = O and y = b, in

conjunction with the electric wall at x = O, 0 S y S b

defines a semi-infinite trough transmission line. The

zero-thickness strip conductor of width 220 extends from

x=q to x=( at a position y=a, where O<a<b. The

midpoint of the strip is x = k, so that ( = h+ w and

q = h – w. Referring to Fig. 1, the normalized dimension

q/b = h/b – w/b, and the dimension T/b= (2b – 2a)/2b

= 1 –a/b.

‘“’+ t-<, .,

—, 1~=. r--’”..
I—’w—l..

v= ’-” x
t. h+w

Fig. 3. Strip-line cell with Mode I boundary conditions.

strip conductor is given by the integral

A potential ~0 is applied to the strip and the potential

is zero on the walls of the trough. A variational expres- @I%Y) =J’GI(%YI fi’,a)u(~’)~~’ (~)
sion for the characteristic impedance of the strip line ~

may be written in terms of the unknown charge dis-

tribution of the strip conductor.z First, we require the
When the point x, y is restricted to the position of the

potential (Green’s function) resulting from a unit line
strip conductor, O(X, y) must reduce to @o the potential

charge located at a point x’, y’ in the trough region of
on the strip, hence

Fig. 3. The Green’s function is defined by the inhomo-

geneous equation

~+:= –:d(x–x’)d(y– y’) (I) where

(5)

where the two-dimensional delta function ti (x – x’)ti (y

– y’) represents the unit source at x’, y’. The boundary Gl(x, al x’, a) which appears in (5) is obtained by setting

conditions on G are y=y’= a in (3), thus

G=O for X=o, O~y~b G,(x, a I z’, u)

Y=b (2)
where k = nz/b. Multiplying (5) by u(x) and integrating

The function G (x, y I #, y’) which satisfies (1) and (2) is over the strip conductor yields

“1()‘lLn-x
pt.z’lb ~inh — , X5X’

b
where

()

(3)
mr.%’

e—IZTX/b Sinh — X>x’

b’

where the notation GI signifies that the Green’s function
is the charge per unit length on the strip conductor. In

derives from the boundary conditions for Mode 1. M KS units:, @OQ has the dimensions volt-coulomb/

The charge per unit area u(x’) on the surface of the ‘eter”

strip conductor is a one-dimensional charge distribu-
te variational formula for impedance is obtained

tion (per unit length) over y’= a, q S ~’ S g. The po-
from the relation

tential at a point x, y resulting from the charge on the

20 = (vC)-’ = (Pt)m EQ
Q’

(8)

2 Collin, R. E., Field Theory of Chided Waves. New York: Mc-
Graw-Hill, 1960, pp 148-165. Substituting; (7) into (8) yields
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J’fgGl(*)~l*’!ou(~)u(~’)~~’~~
201 = (/..Le)l/’ ‘ ‘

[J’a(x)dq’
(9a)

= (/41/2 !!!
Q2

(9b)

Where N= ~oQ represents the double integral in the

numerator of (9a) that is, (7).

The stationary value of (9) is an absolute minimum,

so that (9) provides an ‘(upper bound” to the exact

characteristic impedance of the line. The characteristic

impedance is evaluated by substituting an approximate

representation for cr(x) in (9), and then minimizing

ZOI with respect to the variational parameters a,. This

is accomplished by setting dZO1/i3a, = O, solving for the

parameters a~, and then substituting the a; back into

(9) to determine Z,l. We represent u(J) by the three-

term series.

a(x’) = a~ + alz’ + az.v’z (lo)

The general functional form of a(d) is an asymmetric

parabolic distribution. From (10), the product a(x)

. u(x’) which appears in N is

a(x)u(x’) = aoz + uoal(x + x’) + a0a2(x2 + 322)

+ al’wc’ + a~a2(x’z2 + XX’2) + a,2(z2x’2) (11)

At this point, it is convenient to introduce the func-

tions Zi. Let the six functions Zi (z=O, 1, 2, “ “ . , 5)

represent the following integrals

~f
~. = SSGldidx

V7

~i

21 = H JGldx’dz

77

:$
22 = H z’2Gldx’dx

7V
(12)

if
~3 = Ssxx’ Gldx’dx

WV

E$
24 =

H
xx’2Gldx’dx

~~

(t
25 = Ssz2x’2Gldx’dx

v~ 1

where Gl(x, al x’, a) is defined in (6). Because of the

symmetry of the Green’s function, x’ and x may be

interchanged in any of the integrals (12) without alter-

ing the value of the integral. From (9), we have

~= f’f’Gl(~jalx’ja)~($)@(*’)d*’~* (Is)
77

Substituting (11) into (13), we determine by virtue of

of the definitions (12) and the Green’s fun(ction sym-

metry that N is equal to

N = aoz~o + 2aOalZl + 2aOa& + a12.ZJ

+ 2ala2Z1 + a22Z6 (14)

The evaluation of the Zi integrals is straightforward

and will not be presented here.3 It results that the

Zi functions are comprised of twenty-five fundamental

infinite series which are denoted S~,.4 These series arise

because of the series form of the Green’s function. ‘The

simplest integral is 20. In terms of the series S,,,, ZO

is given by

~~ = ~ [(~ – T)SO’ – Sot+ Sl, + S23 – ~(L5’33 ‘t ~43)] (15)

where, for example,

sinz (ka)e–~ ‘~–~)
s,, = ~ (16)

.=l k3

Substituting (10) into the integral for Q yields

Q= f ‘~(x)dx=2w(ao+alk+azy), coulomb/meter (17)

T

where h = (&+q)/2 is the midpoint of the strip, and

‘Y= ?Z2+ (~2/3). When (14) and (17) are substituted into

(9 b), and ZOI is minimized with respect to the parame-

ters a,, a solution of the equations is

ao=l

K2ZC1 – K12C2
al = 1

KILKJ2 – A’z1K12

A’IIC’ – KSIC1
1

a2 =
A“lliT22 — K“:lh”19 I

(18)

a For details see Duncan, J.. W., Characteristic impedances of
multiconductor strip trausmisslon lines, FR 64-14-153, Hlughes
Aircraft Co., Ground Systems Group, Fullerton, Calif., Aug 7, 1964

~ -rhe fL1nction~ Z, and the series S,, are defiued m the Appendix.
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Substituting (14) and (17) into (9b) along

~ ‘I-JO, and ~ ‘eTeol we Obtain the result

ON MICROWAVE

with ao = 1,
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where e, is the relative dielectric constant and v’I.Lo/co The function Gz(x, y] x’, y’) which satisfies (1) and (21)

= 1207r ohms. In (20), elV=e@@ has the dimensions is

(coulomb/meter)z and, therefore, dV/Q2 is dimension-

less.

Equation (20) is the variational solution for the char-
G2(~, y I z’, y’) = ~ ~ ~ sin

en’ ~=~ n (Y)sin(?)

acteristic impedance of the strip line cell which is de-

picted in Fig. 3. In order to evaluate (20), one must

[

()

?2’7TZ
~–n?r.’ lb ~osh — X5X’

specify the dimensions a, b, h, and w. The twenty-five b

infinite series S,, must be evaluated, and then be used (22)
n~xt

to form the six functions 21. After the Z$ functions
()

~–nmlb ~osh — X>x’

have been determined, the variational parameters al b

and az may be calculated using (18) and (19). The vari-

ables are then substituted into (20) to obtain the char- It is convenient to define six functions Ei which are in-

acteristic imDedance. tegrals of Gz(x, a I x!, a) identical to the integrals of.
We wish to emphasize that the impedance is uniquely

determined by the relative dimensions a/b, h/b, and

w/b. Unfortunately, it is not evident that this condition

exists when one views (20). The dependence of (20) upon

relative dimensions is obscured because of the the

manner in which a-(x) was defined. It may be seen from

(10) and (17) that the coefficients a,, a,, and a, have

different dimensions. The definition (1 O) leads to the

recondite form of (20). If we had chosen to define u(x)

in the normalized form u(x) = ao +al(x/b) +a~(x/b)z,

the dimensions of the coefficients a, would be identical

and the denominator of (20) would take on the new

form d =4w2{a~+a,(h/b) +a, [(h/b) ’+~(w/b)2] }2. The

dependence of ZO1 upon relative dimensions would then

be more evident although the complicated nature of

the ~; functions still makes this identification a difficult

task. In any event, the choice in defining u(x) is com-

pletely arbitrary.

Mode II

The analysis of Mode II holds for the same cell

geometry as Mode I (Fig. 3). The Green’s function is

still defined by (l), but the boundary conditions on the

cell are the following:

13G
. 0 for ~=o O~y~b

ax
1

G+O as X+m O<y <b} (21)

G=O for X>o y=()

Y=b

Gl(x, al x’, a) defined in (12), that is let

(23)

IQow it results that the functions ~; are comprised of

the same twenty-five infinite series Sir that form the

functions Z~, the only difference being changes in sign of

certain of the S,, terms. Consequently, it is convenient

to define the functions ~; and .Qi simultaneously by

means of the dual sign notation ( + ).5 The expression

for, E. is

% = ~ [(~- ds02 - ’03+&3- S23 + ;(.$33 + &3)] (24)

which may be compared to (15), the expression for Zo.

Now it should be evident that the analysis carried out

for Mode I also applies to Mode II. The variational

solution for ZOZ may be written from (20) simply by

replacing Zi by E,; hence,

5 See the Appendix.
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HO + 2alZl + 2a2E2 + a12E3 + 2ala~& + az2Es
V; Zm = 1207r6

1 4w2[1+a1k+a2(]L2 +~)T I“hms

111

(25)

~vhere al and az are given by (18), but the coefficients

h-i] and Ci dejined in (19) now must be constructed using

~,. For example, Kll =& — h~l, and C2 z y~o—~z.

Mode III

The cell geometry of Fig. 3 still applies, but the cell

boundary conditions for Mode III are

G=O for *GO O~y~b)

G=O for X>o y=()

G~O as X+m O<y<b
I

(26)

r3G
—=0 for X>o
dy

y=b

I

From (1) and (26), the Green’s function for Mode III is

Expressions (28) and (29) may be compared to (15) ;and

(16) which apply to Mode 1.

The solution for Mode III follows directly from the

analysis for Mode 1. Zos is given by (2o) when the fi[nc-

tions Z~, and the pa~ameters al and az a~e dwived from

the series xi,.

Mode IV

The boundary conditions for hlode IV on the cell

geometry of Fig. 3 are

G=O for %>0 y=()
)

G+() as X4’X O<y<:b

r3G
=0 for x:() O~y<;b

1

‘(30)
x

r3G
—=0 for X>o
ay

y=b
1

()‘13?rx From (1) and (30), the Green’s function for lVIode I V is
e–n”z’lgb sinh — *<X’

2b

“1 ()

, ‘Sin(:%i]’(%)

(27) G,(x, y I ~’> Y’) = ~ ~=,,; . . . ~Z
PLTX”

e–...12b sinh — X2X1
2b

(

(--)

72iTx
1e–n?m’ltb Cosh X<x’

We may define integrals of Gs(x, al x’, a) identical to
1

2b

the integrals of GI(x, a I x’, a) defined in (12). when the

1 ()

(31)
?Zrr.i

integrals are evaluated, we find that the expressions e–””’lzb cosh — X>a”

are exactly the same as the functions ~; with the fol-
2b

lowing change: the twenty-five infinite series in the we define function integrals of GL identical to the in-

expressions are similar to the series Si., except that the t egrals (23) that applied to Gz. The reader may an~tici-
eigenvalue k = n~/b is replaced by k/2 everywhere and

the summation is restricted to the odd integers. These
pate that this procedure leads to six functions identical

to the previous functions E,, but expressed in terrrs of
companion series to the Si, are denoted Xt,.6 To illus- the odd-term series x;.. To illustrate, the function HO

trate, the function 20 for Mode III is defined for hlode IV is

c1

= : [(t – dxo! – X03 + X13+ X23 – +(X33+

~l,here, for example,

X13
—— i

rz=l,3 ,6,...

‘in, ~’) ,_k(g_,),,(2)

k’

()
——
2

6 The series x,. are defined in the Appendix.

x43) 1 (28) = : [(E– Ti)xo2 – Xm + x13 – x23 + ~(x33 + x43)] (32)

which may be compared to E, for Mode [1 in (24).

The procedure to obtain ZO~ is now obvious ZO1

-is given by (25) when B,, a ~ and a Z are deyived from the

(29) series x,V.

The computational procedure leading to the four

modal solutions may be summarized as follows: For a

given set of cell dimensions, twenty-five series SiP and

twenty-five series x,, must be evaluated. The series S~,

may be used to construct the functions Zi and ~l. One
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obtains VZ ZO1 from (20) using ~; and v’; Z02 from

(25) using ~i. In identical fashion, the series xi, may be

used to construct the functions Z; and E,. In this case,

& ZOt is obtained from (20) using Z, and 4G ZO, is

obtained from (25) using Ei. When calculations were

carried out on an IBM 7094 computer, the computer

was able to obtain 900 different solutions of mode im-

pedance in less than two minutes of machine time.

DISCUSSION OF RESLTLTS

Some interesting relations may be deduced from the

variational formulation of the problem. In Fig. 4(a),

we show a single strip conductor in a trough identical

to the cell geometry of Fig. 3. The trough width is b, and

the strip is located at a position a = b/2, midway be-

tween the parallel ground planes. In Fig. 4(b), we show

a dual strip line in a trough of width b, where the con-

ductors are energized in parallel (+, +) as shown. The

strips are located at positions a = b/4 from the ground

planes. The conductor widths 2W and displacements q

from the end wall are assumed identical in Fig. 4(a)

and (b). We shall now establish an exact relation be-

tween the impedances of the two configurations.

The Green’s function for Fig. 4(a) is (3). The char-

acteristic impedance is given by (20), where the func-

tions Z; derive from the series S,.. We consider the case

a = b/2; thus, in the numerators of all of the series S,.,

the factor sin’(ka) = sin’ [n(7r/2) ] = I for n =1, 3, 5. . .

and sinz(ka) vanishes for n even. Consequently, for this

special case the series S;, reduce to odd-term series

where the sine function in the numerator is equal to

unity.

Now consider Fig. 4(b). The dashed line is a magnetic

wall so that the lower “cell” is similar to the cell for

Mode III defined in boundary conditions (26), except

that the magnetic boundary is defined at y = b in (26),

and it is defined at y = b/2 in Fig. 4(b). The Green’s

function for a unit line source in the cell of Fig. 4(b) is

,* .=l>; ‘inG(.Y,y[x’, y’) = :
!,, . . . F3sin(?)

which may be compared with (3), where (3) leads to

the impedance of Fig. 4(a). Note that (33) is precisely

two times (3), when (3) is restricted to the odd integers.

We have already seen that (3), or more precisely

Gl(x, al x’, a) as defined in (6), becomes an odd-term

series for the case a = b/2.

When one uses (33) to derive the cell impedance for

Fig. 4(b), the solution is given by two times (20), where

the functions Z; are constructed of series identical to

the series S;. with the restriction that the series are

1— ‘w—1
I

b

—v—

b!?

(a)

I t--—- w-l I

L,
@7--------------------------------------t,,,------b --------------------

@ -!-
fl—

(b)

Fig. 4. (a) Single-strip trough transmission line. (b)
Dual-strip trough transmission line.

summed only over the odd integers. For the geometry

under consideration, a = b/4; thus, in all of the series

numerators sinz(ka) = sinz [n(7r/4) ] = 1/2, since n = 1,

3, .5,,. . in (33).

It is now evident that, under the conditions specified,

every series S,, that applies to the cell of Fig. 4(b) is

precisely one-half times the identical series SiV that

applies to Fig. 4(a). The series for the two configura-

tions are identical except for a constant multiplier of

one-half. The functions Z, are linear in the series Si, and

so scale exactly by one-half. From (18) and (19), the

variational parameters al and az are independent of a

constant multiplier. It follows from (20) and the preced-

ing discussion that the “cell impedance” of Fig. 4(b) is

identical to the impedance of Fig. 4(a). The characteris-

tic impedance of the entire dual strip line in Fig. 4(b),

that is, the cell plus its image in the magnetic boundary,

is one-half times the cell impedance. Thus, we estab-

lish that the dual strip-line impedance is exactly one-

half times the single strip-line impedance. Correspond-

ingly, the dual-strip capacitance per unit length is

exactly twice the single-strip capacitance per unit

length, and this characteristic is independent of the

displacement q and the strip width 2w. This rather

remarkable property is made evident through the

variational formulation of the problem. The result is

exact because the variational solution is exact for an

infinite series representation of the charge distribution,

and all of the foregoing results still hold for an infinite

series representation. As the strip displacement q be-

comes very large compared to the trough width, the

impedances approach the values for an isolated stripT

and broadside-coupled stripss between infinite parallel

7 Collin, R. E., op. cit., pp 139–143.
s Cohn, S. B., Characteristic impedances of broadside-coupled

strip transmission lines, IRE T~ans. on Mwowaw Tl~eory and Tech-
niques, ~,ol MTT-8, Nov 1960, pp 633–637.
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ground planes. Thus, the impedarlce relation may be

verified for the limiting case q/b-+ O) from these results.

Because the L’fode III solution was derived for a cell

width of b in order for the geometry to be consistent

with Fig. 1, it follows that Z03 for the dimensions

a/b = 1/2, 2q/b, 2w/b will be identical to 201 for the

dimensions a/b = 1/2, ~/b, w/b.

The variational solution is an upper bound and,

as such, is always somewhat greater than the exact

characteristic impedance of the transmission line. In

order to estimate the accuracy of the variational sol-

utions, we let q/b becomes very large and compare

201 and Z03 with Cohn’s “odd” and “even” mode im-

pedances for broadside-coupled strips. Cohn’s solu-

tions, which are obtained by an approximate conformal

mapping of the problem, are valid (or w/~ greater than

about 0.35. In order to utilize the simplified (4) and

(5) ,’ the additional condition (w/b) /(1 –~/b) >0.35

must be satisfied. Selecting a range of line dimensions

which satisfy these conditions (w/b = 0.5, 0.1 ~~/b

~ O.9), the variational solutions are compared with the

conformal mapping solutions in Table 1. Because of

symmetry, Zol at (~/b) is equal to Z’Ol at (1 –~/b).

Specifying a/b = 1/2, Zol and ZOZ are the odd and

even mode impedances of two coplamar strips displaced

midway between infinite parallel ground planes.lo This

problem may be solved exactly by means of conformal

mapping. In Table II, we compare the variational

solutions with the exact solutions for narrow (w/b

= 0.05) and wide (w/b= 0.5) strips. The gap separation

between the coplanar strips varies from 0.025 to in-

finity, that is, from an extremely small gap to the

geometry of an isolated strip between parallel ground

planes.

First we note that 2.2 is within 2 per cent of the exact

solution over the entire range of dimensions. The varia-

tional solution 201 is accurate to within 2 per cent over

a wide range of dimensions, but the error may exceed

2 per cent when the gap separation q/b becomes small.

Evidently, the simple parabolic charge distribution is

not an adequate representation for very closely spaced

coplanar strips in a (+, –) mode. Considering a con-

stant width strip, the error increases as q/b decreases.

Conversely, for a constant ~/b, the error increases with

the strip width w/b. The maximum error appearing in

Table II is 11.6 per cent which results for w/b= 0.5,

rl/b = 0.025. Because 2.3 is a (+, –) coplanar mode

similar to ZO1, the accuracy in determining ZOS should

follow that of Zol. Correspondingly, ZO, should be de-

termined with the same order of accuracy as 202.

The variational solutions exceed the exact mode im-

pedances by an amount that depends upon the mode

and the relative line dimensions. By studying the data

g Cohn, S., ibid., page 635.
10_ Shielded coupled-strip transmission line, IRE Trans. on

Microwa.; T?Leory and Techniques, vol MTT-3, Ott 1955, pp 29-38.

in Tables I and II, it is possible to estimate a ‘correct-

ion factor” to apply to the variational impedances

so that they will nearly correspond to the exact values.

Consider, for example, the odd and even mode im-

pedances for broadside-coupled strips (201 and ZO~ in

Table I). If one divides the variational values by the

factor 1.02, the variational and exact impedances are

almost identical. The same factor holds for narrow-

width strips. Referring to Table II, if the gap separa-

tion q/b> 0.1, the factor 1.02 adjusts 2.1 to within 2

per cent of the exact impedance for both narrow- and

wide strip conductors. In fact, in most cases, the error

is negligible. I t is possible, of course, to obtain a lower

bound variational solution in terms of an assumed po-

tential distribution, and to thereby “bracket” the

exact impedance of the line. The labor involved in this

procedure is as great as for the upper bound solution

and did not seem warranted in view of the accuracy of

the upper bound solutions for most line dimensions.

Impedance data resulting from the variational

analyses are presented in Figs. 5 through 16. l[n all cases,

the quantity shown is & 20 which is, of course, nu-

merically identical to the characteristic impedance of

an air dielectric (v’;= 1) transmission line excited in

the given mode. 201, ZO1, 203 and 204 are ‘icell imped-

ances” and, therefore, represent the characteristic

impedance from one strip conductor to ground u rider

the boundary conditions imposed by the particular

mode of excitation illustrated in Fig. 2. In Figs. 5

through 9, we show v’~ 201 and ~~ ZOZ as functions of

the normalized strip conductor width w/b. IEach curve

of impedance is for a constant gap separatism q/b. ‘The

family of curves in each figure corresponds to a constant

strip displacement T/b between the broadside-coupled

strips. The curve q/b = ~ yields the impedance of a

single isolated strip conductor between parallel plames,

or of two broadside-coupled strip conductors between

ground planes when excited in the odd mode. As rnen-

tioned above, the odd (+, –) potential symmetry

of Modes I and II about y = b causes ZOI and Z02 at

(r/b) to be identical to ZOI and ZOZ, respectively, at

the symmetrical position [1 – (~/b) ]. Consequently,

the five figures provide impedance data for (T/b) over

the interval 0,1 S (T)b) <0.9 in increments of 0.1.

In a similar fashion, curves of ti~ Z03 and v’; Zoi are

presented in Figs. 10 through 14 for T/b== 0.1, 0.3, 0.5,

0.7, 0.9. The even (+, +) potential symmetry of

Modes III and IV about y = b causes 20s, Z04 at (~/1~) to

be different from Z03, ZO1 at [1 – (~/b) ]. The curve

q/b = m yields the impedance of two broadside-coupled

strip conductors between parallel planes when excited

in the even mode.

The impedance data ~z ZOI and ~~ Zo~ for ~/b:= cc

are collected in Figs. 15 and 16, respective y. These

curves complement Cohn’s solutions for broadside-

coupled strips since they hold for dimensions beyond

the range for which Cohn’s formulas are valid,
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TABLE I

201 z!?,

w/b r/b
Vari- Approxi- \’ari- Approxi-

ational, mate ational, mate
—— —

0.5 0.1 28.7 28.1 173.0 169.6

0.3 58.2 57.0 133.6 131.3

0.5 66.7 65.4 102.2 100.2

0.7 58.2 57.0 70.4 68.6

0.9 28.7 28.1 30.0 29.1

Fig, 5. -J~Z,~ and & ZOZ vs. w/b, q/b, for r/b= 0.1.

TABLE II

2’01 Z02
w/b q/b

Variational Exact Variational Exact
——— —

0.05 0.025 102,8 98.4 285.6 282,5

0.05 ~2’2,2 118.9 269.5 266.1

0,10 146.5 143.4 247.3 245.6

0.20 171.9 168.7 223.2 220.3

0.45 193.4 189.3 203.7 199.7

J “ 199.0 195.0 199.0 195.0

0.50 0.025 51.1 45.8 76.9 75.7

0.05 54.2 50.7 75.5 74.4

0.10 58.3 56.0 73.3 72.2

0.20 62.6 60,9 70.4 69.2

0.45 66.0 64.5 67.5 66.2

J ~ 66.7 65.4 66.7 65.4



1965 Duncan: Impedances of Strip Transmission Lines 115

.,b

Fig. 7. & Zo~ and ~X ZW X-S. w/b, q/b, for r/b= 0.3.

‘“”E=3==F=FTRRFFF71

.,,

Fig. 9. ~;. Z,, and & Zo~ vs. w/b, v/b, for r/b= 0.5.
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Fig. 8. d; ZO, and ~; Z02 vs. w/b, V/b, for T/b =0.4.
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,0,
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Fig. 11. <ZZ03 and <;Z04 VS. w/b, ~/b, for 7/b= 0.3.
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Fig. 13. &z08 and d;Z04 vs. Wlb, ~lb, for T/b ‘0.7

January
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Fig. 12. <~Z03 and v’;ZO, VS. w/b, ~/b, for T/b ‘0.5.

w,b

Fig. 14. d~ZO, and 4;ZO~ VS. wj%, q/fL for T/b ‘0.9.
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w,,

Fig. 15. ~~ZOI vs. w/b, T/b, for ~/b= co. (Odd NIO&
two broadside-coupled strips.)

m

ml:].

APPENDIX

The integral definitions of the functions Z, and E, are given in (12) and

Z03 vs. w/b, T/b, for q/b= m. (Even Mode,
two broadside-coupled strips. )

(23). The functions are written below ior

corresponding indices as a single expression using the ( t ) sign notation. Remember that Z, and Zi also may be

written using the series x,, as was shown in (28) and (32). This procedure leads to the solutions Z03 and 204. The

functions 2, and Z, are as follows:

.20
—

-[
: (t – 7?)s02 – S03 + S13 f Sn T : (s33 + S43)

Zo 1

2!3 ~ .p–qs—— [( )S02 – ; (s03 – S137 sn i S33) – : (s03 – S13T S23+ S43) + ‘$(s04+ S14+ S247 S34)
& eb 3

\

(!34)

(35)

(36)
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24 2 g4 – ~4
.

--[( )
— srJ2

~4 cb 4

.a

+ ; (s04 – S14 + S24 ~ 3S84) – ~ (S04 – S14 ~ S24 f 3s44) * 25(s25 – S35)

1 i

The series S:, and x;, are, in general, functions of the

variables a, b, ~ = (h+w), and q = (h —w). The argu-

ment of the sine function in the S;, series is (km) = n7ra/b.

The argument of the sine function in the x;, series is

(ka/2). The subscript i denotes a family of series, all of

which contain the same exponential factor. For ex-

ample, e–~f~+~) occurs in all of the series S2,. The sub-

script i = O is used when no exponential factor is present.

The subscript v is the exponent or power of k that ap-

pears in the denominator of the general series term.

The subscript v takes on five different values for a

particular i, and the subscript i takes on five values so

that the double subscript notation identifies twenty-

five series S,, and twenty-five series x,.. In all of the

series, k=n~/b and O <a <b.

The five series SO, and the five series XO, are defined

as follows:

~ sinz (ka)
Sov = ~

.=l k’

.% sinz (ka/2)

(40)

Xov =
,2=1,%, . . . (k/2)”

= 2’
sinz (ka/2)

2 k, (41)
n=l,3 ,5, . . .

where v = 2, 3, 4, 5, 7. We point out a characteristic that

is evident in (40) and (41) which holds for all of the

series under discussion. Any series ~t, may be written

from the corresponding series S,. by replacing k by k/2

everywhere, and restricting the summation to the odd

integers. The exponent v does not take on the value 2 in

the remaining series, but does assume the value 6 which

was not true with the series Sop. In the following series,

v=3, 4, 5, 6, 7. We define

sin2 (ka)e–~ ‘~–~)
s,, = 5

.=l k“

5 sinz (ka/2)e–~t~–?)/z
Xlu = 2*

n=l,3,5, . . . k“

sinz (ka)e–~ (f+~)
S2, = i

n= 1 k’

5

sin~ (ka/2)e–~ (Hv) 12
X’v = 2“

rL=l ,3,5,... k“

sin2 (ka/2)e–kf
X3, = 2* i k,

n=l,3 ,5, . . .

m sin’ (ka)e–z~~
S4V= ~

n=1 &

5 sin’ (ka/2)e–kn
X4” = 2*

n=l,3 ,5>. . . k“

(38)

(39)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

The series S02, xoz, Sol, xO1 have closed-form expres-

sions. The series S0s, XOS, S0s, xOS have alternate, more

rapidly converging forms. The reader is directed to the

formal report by Duncan3 for details.
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